

Test Date: September 5th, 2022

embk.me/cooperwinterfell

BREED ANCESTRY

Golden Retriever : 100.0%

GENETIC STATS

Predicted adult weight: **60 lbs** Life stage: **Mature adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-36327044 Swab number: 31210952800649

Fun Fact

A Golden Retriever is also pictured in the Guinness Book of World's Records for "Most tennis balls held in mouth" (with 6). Test Date: September 5th, 2022

embk.me/cooperwinterfell

GOLDEN RETRIEVER

The Golden Retriever was developed in the early 19th century as an ideal hunting companion, able to retrieve birds on both land and water in the marshy Scottish countryside. Their friendliness and intelligence makes the both a popular family pet and an excellent working dog, well suited for being a service dog, therapy dog or for search and rescue. The third most popular breed in the US, the American and Canadian Goldens are generally lankier and darker than their British counterparts. Their wavy, feathered topcoat is water resistant, their undercoat helps them with thermoregulation and both coats have a tendency for heavy seasonal shedding. Goldens need lots of exercise (especially when younger), and their love of play and water means their owners usually get a lot of exercise too! In 2013, the 100th anniversary of Britain's Golden Retriever Club, Goldens from around the world came made the pilgrimage to the breed's birthplace in Scotland, where 222 of them posed in a single record-breaking photo. At the same time, the Golden Retriever Lifetime Study was getting started in the United States, recruiting 3,000 Golden Retrievers for a lifetime study aimed at understanding how genetics, lifestyle and environment influences healthy aging and cancer risk in Goldens.

Test Date: September 5th, 2022

embk.me/cooperwinterfell

MATERNAL LINE

Through Cooper's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B84

Part of the large B1 haplogroup, this haplotype occurs most frequently in Golden Retrievers, Beagles, and Staffordshire Terriers.

Test Date: September 5th, 2022

embk.me/cooperwinterfell

PATERNAL LINE

Through Cooper's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the **Registration: American Kennel Club**

HAPLOTYPE: H1a.53

Part of the A1a haplogroup, this haplotype occurs most frequently in Golden Retrievers, Border Collies, and the Coton de Tulear.

Test Date: September 5th, 2022

embk.me/cooperwinterfell

RESULT

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the **k**^y**k**^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as **K**^B**k**^y may be brindle rather than black or brown.

No dark hairs anywhere (ee)

Not expressed (K^BK^B)

Test Date: September 5th, 2022

embk.me/cooperwinterfell

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any pigmented hair likely yellow or tan (Intermediate Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Not expressed (a^ta)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Not expressed (DD)

Test Date: September 5th, 2022

embk.me/cooperwinterfell

no white in coat (SS)

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Likely black colored Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. nose/feet (BB) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Not expressed (NN) Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene. S Locus (MITF) The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in Likely to have little to white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white

Registration:

patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have

small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Test Date: September 5th, 2022

embk.me/cooperwinterfell

No merle alleles (mm)

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

Test Date: September 5th, 2022

embk.me/cooperwinterfell

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

RESULT

Test Date: September 5th, 2022

embk.me/cooperwinterfell

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

Test Date: September 5th, 2022

embk.me/cooperwinterfell

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Likely light shedding (TT)

RESULT

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Likely straight coat (CC)

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Test Date: September 5th, 2022

embk.me/cooperwinterfell

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Registration:

Test Date: September 5th, 2022

embk.me/cooperwinterfell

Likely medium or long

muzzle (CC)

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

Test Date: September 5th, 2022

embk.me/cooperwinterfell

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

Less likely to have blue

eyes (NN)

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1) The I allele is associated with smaller body size		Intermediate (NI)
Body Size (IGFR1) The A allele is associated with smaller body size	Э.	Larger (GG)
Body Size (STC2) The A allele is associated with smaller body size	Э.	Larger (TT)
Body Size (GHR - E191K) The A allele is associated with smaller body size	Э.	Larger (GG)
Body Size (GHR - P177L) The T allele is associated with smaller body size	Э.	Larger (CC)

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
TRAITS: PERFORMANCI	E	
TRAIT		RESULT
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with a	becially tolerant of low oxygen environments (hypoxia), such as those at least one A allele are less susceptible to "altitude sickness." This breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC)		
dogs with no copies of the mutation likely to have high food motivation, w percentage, and be more prone to ob	ound primarily in Labrador and Flat Coated Retrievers. Compared to (NN), dogs with one (ND) or two (DD) copies of the mutation are mor which can cause them to eat excessively, have higher body fat besity. Read more about the genetics of POMC, and learn how you car ost (https://embarkvet.com/resources/blog/pomc-dogs/). We est.	motivation (NN)

Test Date: September 5th, 2022

embk.me/cooperwinterfell

HEALTH REPORT

How to interpret Cooper's genetic health results:

If Cooper inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Cooper for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 245 genetic health risks we analyzed, we found 1 result that you should learn about.

 \bigcirc Increased risk results (1)

Ichthyosis, ICH1

Clear results

Breed-relevant (10)

Other (234)

Test Date: September 5th, 2022

embk.me/cooperwinterfell

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Cooper, and may influence his chances of developing certain health conditions.

C Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)	Increased risk
Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
O Degenerative Myelopathy, DM (SOD1A)	Clear
O Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)	Clear
Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
Muscular Dystrophy (DMD, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golden Retriever Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear

Registration: American Kennel Club (AKC) SS21057002

Test Date: September 5th, 2022

embk.me/cooperwinterfell

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Cooper. Review any increased risk or notable results to understand his potential risk and recommendations.

2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
 Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant) 	Clear

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
Canine Multiple System Degene	eration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
⊘ Canine Multiple System Degene	eration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile M	fortality (YARS2)	Clear
Centronuclear Myopathy, CNM ((PTPLA)	Clear
Cerebellar Hypoplasia (VLDLR, E	Eurasier Variant)	Clear
🔗 Chondrodystrophy (ITGA10, Nor	wegian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (AD	DAMTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2	, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUB	N Exon 8, Beagle Variant)	Clear
🔗 Cobalamin Malabsorption (CUB	N Exon 53, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)		Clear
Complement 3 Deficiency, C3 D	eficiency (C3)	Clear
Congenital Hypothyroidism (TP	O, Rat, Toy, Hairless Terrier Variant)	Clear
Congenital Hypothyroidism (TP	O, Tenterfield Terrier Variant)	Clear
Ocongenital Hypothyroidism with	n Goiter (SLC5A5, Shih Tzu Variant)	Clear
⊘ Congenital Macrothrombocytop	penia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Ocongenital Myasthenic Syndrom	ne, CMS (COLQ, Labrador Retriever Variant)	Clear
Ocongenital Myasthenic Syndror	ne, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
Registration: American Kennel Club (AKC)	Rembark	

Registration: American Kennel Club (AKC) SS21057002

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
Ongenital Myasthenic Syndrome, C	CMS (CHRNE, Jack Russell Terrier Variant)	Clear
🔗 Congenital Stationary Night Blindne	ess (LRIT3, Beagle Variant)	Clear
Ongenital Stationary Night Blindne	ess (RPE65, Briard Variant)	Clear
🔗 Craniomandibular Osteopathy, CMO) (SLC37A2)	Clear
🔗 Cystinuria Type I-A (SLC3A1, Newfo	undland Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1, Austra	alian Cattle Dog Variant)	Clear
🔗 Cystinuria Type II-B (SLC7A9, Miniat	ture Pinscher Variant)	Clear
Day Blindness (CNGB3 Deletion, Ala	askan Malamute Variant)	Clear
Day Blindness (CNGA3 Exon 7, Germ	nan Shepherd Variant)	Clear
🔗 Day Blindness (CNGA3 Exon 7, Labra	ador Retriever Variant)	Clear
Day Blindness (CNGB3 Exon 6, Gerr	man Shorthaired Pointer Variant)	Clear
Ø Deafness and Vestibular Syndrome	of Dobermans, DVDob, DINGS (MYO7A)	Clear
Oemyelinating Polyneuropathy (SBF	F2/MTRM13)	Clear
Diffuse Cystic Renal Dysplasia and	Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Varian	t) Clear
Dilated Cardiomyopathy, DCM (RBM)	120, Schnauzer Variant)	Clear
Dilated Cardiomyopathy, DCM1 (PDF	K4, Doberman Pinscher Variant 1)	Clear
Dilated Cardiomyopathy, DCM2 (TTR)	N, Doberman Pinscher Variant 2)	Clear
Dry Eye Curly Coat Syndrome (FAM8)	83H Exon 5)	Clear
Registration: American Kennel Club (AKC)	Rembark	

SS21057002

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
Ø Dystrophic Epidermolysis Bullosa (CO)	DL7A1, Central Asian Shepherd Dog Variant)	Clear
Early Bilateral Deafness (LOXHD1 Exor	n 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD (EP)	2S8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Early Onset Cerebellar Ataxia (SEL1L,	Finnish Hound Variant)	Clear
Schlers Danlos (ADAMTS2, Doberman F	Pinscher Variant)	Clear
Enamel Hypoplasia (ENAM Deletion, It	talian Greyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, Parso	n Russell Terrier Variant)	Clear
Episodic Falling Syndrome (BCAN)		Clear
Exercise-Induced Collapse, EIC (DNM	1)	Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Sactor XI Deficiency (F11 Exon 7, Kerry	Blue Terrier Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 3	3, Cocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 3	30, English Springer Spaniel Variant)	Clear
🔗 Fanconi Syndrome (FAN1, Basenji Vari	iant)	Clear
Setal-Onset Neonatal Neuroaxonal Dy	strophy (MFN2, Giant Schnauzer Variant)	Clear
🔗 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
🔗 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe o	disease (GALC Exon 5, Terrier Variant)	Clear
Registration: American Kennel Club (AKC)	. Frank and	

Registration: American Kennel Club (AKC) SS21057002

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
Glycogen Storage Disease Type I	A, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type II	IIA, GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type V and English Springer Spaniel Vari	′II, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whip iant)	pet Clear
Glycogen storage disease Type V Wachtelhund Variant)	II, Phosphofructokinase Deficiency, PFK Deficiency (PFKM,	Clear
GM1 Gangliosidosis (GLB1 Exon 2	2, Portuguese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 1	5, Shiba Inu Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 1	5, Alaskan Husky Variant)	Clear
🔗 GM2 Gangliosidosis (HEXA, Japar	nese Chin Variant)	Clear
GM2 Gangliosidosis (HEXB, Pood	le Variant)	Clear
Goniodysgenesis and Glaucoma,	Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German	n Shepherd Variant 1)	Clear
🔗 Hemophilia A (F8 Exon 1, German	Shepherd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer)	Variant)	Clear
Hemophilia B (F9 Exon 7, Terrier V	/ariant)	Clear
🔗 Hemophilia B (F9 Exon 7, Rhodesi	ian Ridgeback Variant)	Clear
🔗 Hereditary Ataxia, Cerebellar Deg	eneration (RAB24, Old English Sheepdog and Gordon Setter Vari	ant) Clear
Hereditary Cataracts (HSF4 Exon	9, Australian Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratos	is (FAM83G, Terrier and Kromfohrlander Variant)	Clear

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
Hereditary Footpad Hyperkerato	sis (DSG1, Rottweiler Variant)	Clear
🔗 Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis,	HNPK (SUV39H2)	Clear
Hereditary Vitamin D-Resistant I	Rickets (VDR)	Clear
🔗 Hypocatalasia, Acatalasemia (CA	AT)	Clear
Hypomyelination and Tremors (F	NIP2, Weimaraner Variant)	Clear
Hypophosphatasia (ALPL Exon 9	9, Karelian Bear Dog Variant)	Clear
🔗 Ichthyosis (NIPAL4, American Bu	ulldog Variant)	Clear
Ichthyosis (SLC27A4, Great Dane	e Variant)	Clear
Ichthyosis, Epidermolytic Hyperl	keratosis (KRT10, Terrier Variant)	Clear
Inflammatory Myopathy (SLC254	A12)	Clear
Inherited Myopathy of Great Dar	nes (BIN1)	Clear
Inherited Selected Cobalamin M	lalabsorption with Proteinuria (CUBN, Komondor Variant)	Clear
O Intervertebral Disc Disease (Typ	e I) (FGF4 retrogene - CFA12)	Clear
Junctional Epidermolysis Bullos	a (LAMA3 Exon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bullos	a (LAMB3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis and	Polyneuropathy (RAB3GAP1, Rottweiler Variant)	Clear
Registration: American Kennel Club (AKC)	Standards	

Registration: American Kennel Club (AKC) SS21057002

SS21057002

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
L-2-Hydroxyglutaricaciduria, L2HGA (L2H	GDH, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG4D)		Clear
🔗 Laryngeal Paralysis (RAPGEF6, Miniature	Bull Terrier Variant)	Clear
S Late Onset Spinocerebellar Ataxia (CAPN	11)	Clear
Late-Onset Neuronal Ceroid Lipofuscinos	sis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1 (LPN1, ARH)	IGEF10)	Clear
Leonberger Polyneuropathy 2 (GJA9)		Clear
Lethal Acrodermatitis, LAD (MKLN1)		Clear
🔗 Leukodystrophy (TSEN54 Exon 5, Standa	rd Schnauzer Variant)	Clear
🚫 Ligneous Membranitis, LM (PLG)		Clear
C Limb Girdle Muscular Dystrophy (SGCD, E	Boston Terrier Variant)	Clear
SGC Limb-Girdle Muscular Dystrophy 2D (SGC	CA Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Sundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST6	3)	Clear
Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Registration: American Kennel Club (AKC)	Fembark	

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, S	Soft Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sa	nfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)) Clear
 Mucopolysaccharidosis Type III Variant) 	IA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshi	und Clear
Mucopolysaccharidosis Type III Huntaway Variant)	IA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zea	aland Clear
 Mucopolysaccharidosis Type VI Variant) 	I, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature F	Pinscher Clear
Mucopolysaccharidosis Type VI	II, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Varia	ant) Clear
Mucopolysaccharidosis Type VI	II, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Varian	t) Clear
Multiple Drug Sensitivity (ABCB	31)	Clear
Muscular Dystrophy (DMD, Cava	alier King Charles Spaniel Variant 1)	Clear
Musladin-Lueke Syndrome, MLS	S (ADAMTSL2)	Clear
🧭 Myasthenia Gravis-Like Syndroi	me (CHRNE, Heideterrier Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exc	on 23, Australian Cattle Dog Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exc	on 7, Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Da	achshund Variant)	Clear
Narcolepsy (HCRTR2 Intron 4, D	Ooberman Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, L	abrador Retriever Variant)	Clear
🔗 Nemaline Myopathy (NEB, Amer	rican Bulldog Variant)	Clear

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
Neonatal Cerebellar Cortica	al Degeneration (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy v	with Seizures, NEWS (ATF2)	Clear
Neonatal Interstitial Lung D	visease (LAMP3)	Clear
Neuroaxonal Dystrophy, NAI	D (VPS11, Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NAI	D (TECPR2, Spanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscin	osis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscine	osis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscine	osis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscine	osis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscin	osis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscin	osis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscine	osis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscine	osis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscin	osis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscine Variant) 	osis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordsh	nire Terrier Clear
Oculocutaneous Albinism, C	OCA (SLC45A2, Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant)	Clear
Osteochondrodysplasia (SL	_C13A1, Poodle Variant)	Clear
Registration: American Kennel Club (AKC)		

Registration: American Kennel Club (AKC) SS21057002

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
Osteogenesis Imperfecta ((COL1A2, Beagle Variant)	Clear
Osteogenesis Imperfecta ((SERPINH1, Dachshund Variant)	Clear
P2Y12 Receptor Platelet D	isorder (P2Y12)	Clear
🔗 Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, Px	D (PIGN)	Clear
Persistent Mullerian Duct	Syndrome, PMDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F	1 Intron 4, Karelian Bear Dog Variant)	Clear
Platelet Factor X Receptor	Deficiency, Scott Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease,	, PKD (PKD1)	Clear
🔗 Pompe's Disease (GAA, Fir	nnish and Swedish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (K	LKB1 Exon 8)	Clear
🔗 Primary Ciliary Dyskinesia,	PCD (NME5, Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia,	PCD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AG)	XT)	Clear
Primary Lens Luxation (AD	AMTS17)	Clear
Primary Open Angle Glauce	oma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glauce	oma (ADAMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glauce	oma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
Registration: American Kennel Club (AKC	C) Kembark	

SS21057002

DNA Test F	Report Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER	RRESULTS	
⊘ Prim Varia	nary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, ant)	Chinese Shar-Pei Clear
🔗 Prog	gressive Retinal Atrophy (SAG)	Clear
🔗 Prog	gressive Retinal Atrophy (IFT122 Exon 26, Lapponian Herder Variant)	Clear
🔗 Prog	gressive Retinal Atrophy, Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland	Sheepdog Variant) Clear
🔗 Prog	gressive Retinal Atrophy, CNGA (CNGA1 Exon 9)	Clear
🔗 Prog	gressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Varia	ant) Clear
🔗 Prog	gressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear
🔗 Prog	gressive Retinal Atrophy, PRA1 (CNGB1)	Clear
🔗 Prog	gressive Retinal Atrophy, PRA3 (FAM161A)	Clear
🔗 Prog	gressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
🔗 Prog	gressive Retinal Atrophy, rcd3 (PDE6A)	Clear
🔗 Prop	portionate Dwarfism (GH1 Exon 5, Chihuahua Variant)	Clear
🔗 Prote	ein Losing Nephropathy, PLN (NPHS1)	Clear
🔗 Pyru	ivate Dehydrogenase Deficiency (PDP1, Spaniel Variant)	Clear
🔗 Pyru	ıvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)	Clear
🔗 Pyru	ivate Kinase Deficiency (PKLR Exon 7, Beagle Variant)	Clear
🔗 Pyru	ivate Kinase Deficiency (PKLR Exon 10, Terrier Variant)	Clear
🔗 Pyru	ivate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)	Clear

Registration: American Kennel Club (AKC) SS21057002

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
O Pyruvate Kinase Deficienc	cy (PKLR Exon 7, Pug Variant)	Clear
Raine Syndrome (FAM20C	;)	Clear
Recurrent Inflammatory Pu	ulmonary Disease, RIPD (AKNA, Rough Collie Variant)	Clear
🔗 Renal Cystadenocarcinom	na and Nodular Dermatofibrosis (FLCN Exon 7)	Clear
Sensory Neuropathy (FAM	1134B, Border Collie Variant)	Clear
Severe Combined Immund	odeficiency, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immund	odeficiency, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome	(PLP1, English Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory	y Disease, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 ((COL11A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (P	PKP1, Chesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SC	CN8A, Alpine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia wit	th Myokymia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with	h Cerebellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with	h Cerebellar Ataxia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4	Exon 28, Labrador Retriever Variant)	Clear
Succinic Semialdehyde De	ehydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1	Exon 5, American Eskimo Dog Variant)	Clear
Registration: American Kennel Club (AKG	C) Kembark	

SS21057002

SS21057002

DNA Test Report	Test Date: September 5th, 2022	embk.me/cooperwinterfell
OTHER RESULTS		
O Thrombopathia (RASGRP1 Exc	on 5, Basset Hound Variant)	Clear
🔗 Thrombopathia (RASGRP1 Exc	on 8, Landseer Variant)	Clear
Trapped Neutrophil Syndrome	e, TNS (VPS13B)	Clear
🔗 Ullrich-like Congenital Muscu	ılar Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
🚫 Ullrich-like Congenital Muscu	ular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
🚫 Unilateral Deafness and Vesti	ibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
🚫 Urate Kidney & Bladder Stone	≥s (SLC2A9)	Clear
⊘ Von Willebrand Disease Type	I, Type I vWD (VWF)	Clear
⊘ Von Willebrand Disease Type	II, Type II vWD (VWF, Pointer Variant)	Clear
⊘ Von Willebrand Disease Type	III, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
⊘ Von Willebrand Disease Type	III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Va	riant) Clear
⊘ Von Willebrand Disease Type	III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephropa	athy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopath	hy (MTM1, Labrador Retriever Variant)	Clear
S X-Linked Progressive Retinal	Atrophy 1, XL-PRA1 (RPGR)	Clear
S X-linked Severe Combined Im	nmunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
S X-linked Severe Combined Im	nmunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
🔗 β-Mannosidosis (MANBA Exo	n 16, Mixed-Breed Variant)	Clear
Registration: American Kennel Club (AKC)	Rembark	

Test Date: September 5th, 2022

embk.me/cooperwinterfell

HEALTH REPORT

Increased risk result

Ichthyosis, ICH1

Cooper Winterfell inherited both copies of the variant we tested for Ichthyosis, ICH1 Cooper is at increased risk for Ichthyosis, ICH1

How to interpret this result

Cooper has two copies of a variant at PNPLA1 and is at risk for developing ichthyosis. Please consult your veterinarian to discuss further diagnostics, treatment, and care for this condition.

What is Ichthyosis, ICH1?

This skin disorder gets its name from the thick, darkly pigmented scales of skin ("ichthys" is Greek for "fish") that affected dogs display over most areas of the body, not including the head or extremities.

When signs & symptoms develop in affected dogs

As puppies, affected dogs can show signs of scaling. This disease tends to worsen with age.

Signs & symptoms

Ichthyotic dogs typically have large, greasy flakes of dandruff, but aren't itchy. The scales of skin can get so thick that they can crack and cause fissures, leading to considerable discomfort.

How vets diagnose this condition

Examining the characteristic lesions is the first step in diagnosing Ichthyosis. Confirmatory genetic testing and/or skin biopsies can also be performed.

How this condition is treated

There is no definitive treatment for ichthyosis: typically, ichthyotic dogs are maintained on a continuous treatment of mild antidandruff shampoos and moisturizing rinses. This is a chronic and frustrating condition to manage.

Actions to take if your dog is affected

• Following your veterinarian's advice on skin care and nutrition is the best way to manage ichthyosis.

Test Date: September 5th, 2022

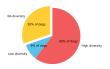
embk.me/cooperwinterfell


INBREEDING AND DIVERSITY

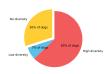
CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.


17%

RESULT


No Diversity

How common is this amount of diversity in purebreds:

No Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.